

Via monte Nero, 40/B - 21049 TRADATE (VA) ITALY

Phone: +39 (0)331841070 Fax:+39 (0)331841950 - e-mail:datexel@datexel.it - www.datexel.it

FEATURES

- Configurable input for RTD, TC, mV, V, mA, Resistance and Potentiometer
- Configurable output in current or voltage
- Configurable by Personal Computer
- High accuracy
- On-field reconfigurable
- EMC compliant CE mark
- Suitable for DIN rail mounting in compliance with EN-50022 and EN50035

PC programmable universal signal converter

DAT 2115

 ϵ

GENERAL DESCRIPTION

The converter DAT 2115 is able to execute many functions such as: measure and linearisation of the temperature characteristic of RTDs sensors, conversion of a linear resistance variation, conversion of a standard active current signal, conversion of a voltage signal even coming from a potentiometer connected on its input. Moreover the DAT 2115 is able to measure and linearise the standard thermocouples with internal cold junction compensation. In function of programming, the measured values are converted in a current or voltage signal. The device guarantees high accuracy and performances stability both in time and in temperature.

The programming of the DAT 2115 is made by a Personal Computer using the software PROSOFT, developed by DATEXEL, that runs under the operative system "Windows™". By use of PROSOFT, it is possible to configure the converter to interface it with the most used sensors.

In case of sensors with a no-standard output characteristic, it is possible to execute, via software, a "Custom" linearisation (per step) to obtain an output linearised signal.

For Resistance and RTDs sensors it is possible to program the cable compensation with 3 or 4 wires; for Thermocouples it is possible to program the Cold Junction Compensation (CJC) as internal or external.

It is possible to set the minimum and maximum values of input and output ranges in any point of the scale, keeping the minimum span shown in the table below. Moreover it is available the option of alarm for signal interruption (burn-out) that allows to set the output value as high or low out of scale.

The DAT 2115 is in compliance with the Directive 2004/108/EC on the Electromagnetic Compatibility.

It is housed in a plastic enclosure of 12.5 mm thickness suitable for DIN rail mounting in compliance with EN-50022 and EN-50035 standards.

USER INSTRUCTIONS

The converter DAT 2115 must be powered by a direct voltage between 18 to 30 V applied to the terminals R(+Vdc) and Q (GND) as shown in the section "Power supply connections".

The output signal, in voltage or current, is provided to the terminals N(OUT) and M (GND), as shown in the section "Output connections".

The input connections must be made as shown in the section "Input connections".

To configure, calibrate and install the converter, refer to sections " DAT 2115: configuration and calibration" and "Installation Instructions".

TECHNICAL SPECIFICATIONS (Typical at 25 °C and in nominal conditions)

	ı		1	Υ				
Input type	Min	Max	Min. span	Input calibration (1)		Response time (10÷ 90%)		about 400 ms
TC(*) CJC int./ext.				RTD	> of ±0.1% f.s. or ±0.2°C			
J	-200°C	1200°C	2 mV	Low res.	> of $\pm 0.1\%$ f.s. or $\pm 0.15 \Omega$	Power supply		
ĸ	-200°C	1370°C	2 mV	High res.	> of $\pm 0.2\%$ f.s. or ± 1.0	Power supply voltage	ge	18 30 Vdc
S	-50°C	1760°C	2 mV	mV, TC	> of ±0.1% f.s. or ±18 uV > of ±0.1% f.s. or ± 2 mV	Reverse polarity pro	otection	60 Vdc max
Ř	-50°C	1760°C	2 mV	Volt mA	> of ±0.1% f.s. or ± 2 mV > of ±0.1% f.s. or ± 6 uA			
В	400°C	1820°C	2 mV	I IIIA	> 01 ±0.1% 1.5. 01 ± 0 uA	Current consump	tion	
Ē	-200°C	1000°C	2 mV	Output calibration	า		Current output 40 mA max.	
T	-200°C	400°C	2 mV	Current	± 7 uA	Voltage output		20 mA max.
N	-200°C	1300°C	2 mV	Voltage	± 5 mV	Voltage output		20 IIIA IIIax.
RTD(*) 2,3,4 wires				Input impedance				
Pt100	-200°C	850°C	50°C	TC, mV	>= 10 MΩ	Output Load Resistance (Rload)		•
Pt1000	-200°C	200°C	50°C	Volt	>= 1 MΩ	Current output		= 650 Ω</td
Ni100	-60°C	180°C	50°C	Current	~ 50 Ω	Voltage output		>/= 3.5 KΩ
Ni1000	-60°C	150°C	50°C	Linearity (1)		Limitation current		about 25 mA
Voltage				тс	± 0.2 % f.s.			
mV	-400 mV	+400 mV	2 mV	RTD	± 0.1 % f.s.	Temperature & hu		
mV	-100 mV		2 mV	Line resistance in	fluence	Operative temperature		-20°C +70°C
Volt	- 10 V	+10 V	500 mV	TC, mV	<=0.8 uV/Ohm	Storage temperature -40°C +85°C Humidity (not condensed) 0 90 %		-40°C +85°C
Potentiometer				RTD 3 wires		Humidity (not cond	iensea)	0 90 %
(Nominal value)	0 Ω	200 Ω	10%	RTD 3 wires	$0.05\%/\Omega$ (50 Ω balanced max.)			
(rtommar varao)	200 Ω	500 Ω	10%	RTD 4 wires	$0.005\%/\Omega$ (100 Ω balanced max.)	Housing		
	0.5 ΚΩ	50 KΩ	10%	RTD excitation cu	irrent	Material		nguish plastic
	0.01122	00 1422	1070	Typical	0.350 mA	Mounting		in compliance with
RES. 2,3,4 wires			40.0	''				22 and EN-50035
Low	0 Ω	300 Ω	10 Ω	CJC comp.	± 0.5°C	Weight	about 90) g.
High	0 Ω	2000 Ω	200 Ω			FMC (for the disease		\
Current				Thermal drift (1)		EMC (for industr	iai enviro	EN 61000-6-2
mA	-10 mA	+24 mA	2 mA	Full scale CJC	± 0.01% / °C ± 0.01% / °C	Immunity Emission		EN 61000-6-2 EN 61000-6-4
Output type	Min	Max	Min. span		± 0.01% / C			
Direct current	0 mA	20 mA	4 mA	Burn-out values Max. values	about 23 mA or 10.8 Vdc			
Reverse current	20 mA	0 mA	4 mA	Min. values	about 23 mA or 10.8 vdc about 0 mA or 0 Vdc			
Direct voltage	0 V	10 V	1 V	iviiii. values	about 0 IIIA OI 0 Vuc			
Reverse voltage	10 V	0 V	1 V	(1) referred to input Spar	n (difference between max. and min. values)			
1	I	1	1	1		I		

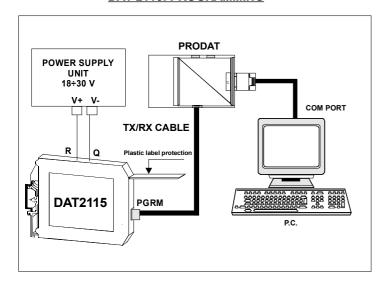
DAT 2115: CONFIGURATION AND CALIBRATION

Warning: during these operations the device must always be powered.

- CONFIGURATION

- 1) Power-on the DAT 2115 by a direct voltage between 18 ÷ 30 V .
- 2) Open the plastic label protection on front side of DAT 2115.
- 3) Connect the interface PRODAT to the Personal Computer and to device (connector PGRM - see section "DAT 2115: PROGRAMMING").
- 4) Run the software PROSOFT.
- 5) Set the parameters of configuration .
- 6) Program the device.

- CALIBRATION CONTROL


With software PROSOFT running:

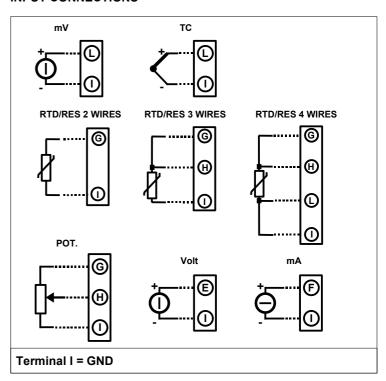
- 1) Connect on the input a calibrator setted with minimum and maximum values referred to the electric signal or to the temperature sensor to measure.
- 2) Set the calibrator at the minimum value.
- 3) Verify that the DAT 2115 provides on output the minimum setted value.
- 4) Set the calibrator at the maximum value.
- 5) Verify that the DAT 2115 provides on output the maximum setted value.
- 6) In case of regulation of value obtained in the step 3 and 5, use the ZERO and SPAN regulators of software PROSOFT.

The variation introduced from these regulators must be calculated as percentage of the input range.

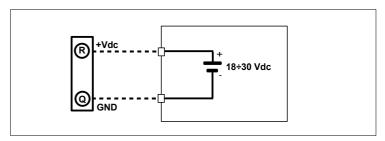
7) Program the device with the new parameters .

DAT 2115: PROGRAMMING

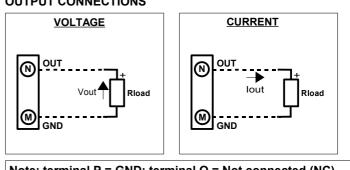
DIMENSIONS (mm) & CONNECTOR PGRM

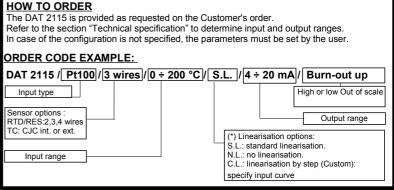

INSTALLATION INSTRUCTIONS

The device DAT 2115 is suitable for DIN rail mounting.


It is necessary to install the device in a place without vibrations; avoid to routing conductors near power signal cables .

DAT 2115: CONNECTIONS


INPUT CONNECTIONS


POWER SUPPLY CONNECTIONS

OUTPUT CONNECTIONS

Note: terminal P = GND; terminal O = Not connected (NC)

